5 things space exploration brought back down to Earth

Recently, I wrote about how a thing as terrible as World War I still gave us some actual benefits, like improvements in plastic surgery, along with influencing art in the 20th century. Now, I’d like to cover something much more positive: five of the tangible, down-to-earth benefits that NASA’s space programs, including the Apollo program to the Moon, have given us.

I’m doing so because I happened across another one of those ignorant comments on the internet along the lines of, “What did going to the Moon ever really get us except a couple of bags of rocks?” That’s kind of like asking, “What did Columbus sailing to America ever really get us?” The answer to that should be obvious, although NASA did it with a lot fewer deaths and exactly zero genocide.

All of those Apollo-era deaths came with the first manned attempt, Apollo 1, which was destroyed by a cabin fire a month before its actual launch date during a test on the pad on January 27, 1967, killing all three astronauts aboard. As a consequence, missions 2 through 6 were unmanned. Apollo 7 tested docking maneuvers for the Apollo Crew and Service Modules, to see if this crucial step would work, and Apollo 8 was the first to achieve lunar orbit, circling our satellite ten times before returning to Earth. Apollo 9 tested the crucial Lunar Module, responsible for getting the first humans onto and off of the Moon, and Apollo 10 was a “dress rehearsal,” which went through all of the steps except the actual landing.

Apollo 11, of course, was the famous “one small step” mission, and after that we only flew six more times to the Moon, all of them meant to do the same as 11, but only the other one that’s most people remember, Apollo 13, is famous for failing to make it there.

I think the most remarkable part is that we managed to land on the Moon only two-and-a-half years after that disastrous first effort, and then carried out five successful missions in the three-and-a-half-years after that. What’s probably less well-known is that three more missions were cancelled between Apollo 13 and 14, but still with the higher numbers 18 through 20 because their original launch dates were not until about two years later.

Yes, why they just didn’t skip from to 17 so that the numbering worked out to 20 is a mystery.

Anyway, the point is that getting to the Moon involved a lot of really intelligent people solving a lot of tricky problems in a very short time, and as a result of it, a ton of beneficial tech came out of it. Some of this fed into or came from Apollo directly, while other tech was created or refined in successive programs, like Skylab, and  the Space Shuttle.

Here are my five favorites out of the over 6,300 technologies that NASA made great advances in on our journeys off of our home planet.

CAT scanner: Not actually an invention of NASA’s per se — that credit goes to British physicists Godfrey Hounsfield and Allan Cormack. However, the device did use NASA’s digital imaging technology in order to work, and this had been developed by JPL for NASA in order to enhance images taken on the moon. Since neither CAT scanners nor MRIs use visible light to capture images, the data they collect needs to be processed somehow and this is where digital imaging comes in.

A CAT scanner basically uses a revolving X-ray tube to repeatedly circle the patient and create a profile of data taken at various depths and angles, and this is what the computer puts together. The MRI is far safer (as long as you don’t get metal too close to it.)

This is because instead of X-rays an MRI machine works by using a magnetic field to cause the protons in every water molecule in your body to align, then pulsing a radio frequency through, which unbalances the proton alignment. When the radio frequency is then turned off, the protons realign. The detectors sense how long it takes protons in various places to do this, which tells them what kind of tissue they’re in. Once again, that old NASA technology takes all of this data and turns it into images that can be understood by looking at them. Pretty nifty, huh?

Invisible braces: You may remember this iconic moment from Star Trek IV: The One with the Whales, in which Scotty shares the secret of “transparent aluminum” with humans of 1986.

However, NASA actually developed transparent polycrystalline alumina long before that film came out and, although TPA is not a metal, but a ceramic, it contributed to advances in creating nearly invisible braces. (Note that modern invisible braces, like Invisalign, are not made of ceramic.)

But the important point to note is that NASA managed to take a normally opaque substance and allow it to transmit light while still maintaining its properties. And why did NASA need transparent ceramic? Easy. That stuff is really heat-resistant, and if you have sensors that need to see light while you’re dumping a spacecraft back into the atmosphere, well, there you go. Un-melting windows and antennae, and so on. This was also a spin-off of heat-seeking missile technology.

Joystick: You can be forgiven for thinking that computer joysticks were invented in the early 1980s by ATARI or (if you really know your gaming history) by ATARI in the early 1970s. The first home video game, Pong, was actually created in 1958, but the humble joystick itself goes back to as far as aviation does, since that’s been the term for the controller on airplanes since before World War I. Why is it called a “joystick?” We really don’t know, despite attempts at creating folk etymology after the fact.

However, those early joysticks were strictly analogue — they were connected mechanically to the flaps and rudders that they controlled. The first big innovation came thirty-two years before Pong, when joysticks went electric. Patented in 1926, it was dreamt up by C. B. Mirick at the U.S. Naval Research Laboratory. Its purpose was also controlling airplanes.

So this is yet another incidence of something that NASA didn’t invent, but boy howdy did they improv upon it — an absolute necessity when you think about it. For NASA, joysticks were used to land craft on the Moon and dock them with each other in orbit, so precision was absolutely necessary, especially when trying to touch down on a rocky satellite after descending through no atmosphere at orbital speed, which can be in the vicinity of 2,300 mph (about 3,700 km/h) at around a hundred kilometers up. They aren’t much to look at by modern design standards, but one of them sold at auction a few years back for over half a million dollars.

It gets even trickier when you need to dock two craft moving at similar speed, and in the modern day, we’re doing it in Earth orbit. The International Space Station is zipping along at a brisk 17,150 mph, or 27,600 km/h. That’s fast.

The early NASA innovations involved adding rotational control in addition to the usual X and Y axes, and later on they went digital and all kinds of crazy in refining the devices to have lots of buttons and be more like the controllers we know and love today. So next time you’re shredding it your favorite PC or Xbox game with your $160 Razer Wolverine Ultimate Chroma Controller, thank the rocket scientists at NASA. Sure, it doesn’t have a joystick in the traditional sense, but this is the future that space built, so we don’t need one!

Smoke detector: This is another device that NASA didn’t invent, but which they certainly refined and improved. While their predecessors, automatic fire alarms, date back to the 19th century, the first model relied on heat detection only. The problem with this, though, is that you don’t get heat until the fire is already burning, and the main cause of death in house fires isn’t the flames. It’s smoke inhalation. The version patented by George Andrew Darby in England in the 1890s did account for some smoke, but it wasn’t until the 1930s the concept of using ionization to detect smoke happened. Still, these devices were incredibly expensive, so only really available to corporations and governments. But isn’t that how all technological progress goes?

It wasn’t until NASA teamed with Honeywell (a common partner) in the 1970s that they managed to bring down the size and cost of these devices, as well as make them battery-operated. More recent experiments on ISS have helped scientists to figure out how to refine the sensitivity of smoke detectors, so that it doesn’t go off when your teenage boy goes crazy with the AXE body spray or when there’s a little fat-splash back into the metal roaster from the meat you’re cooking in the oven. Both are annoying, but at least the latter does have a positive outcome.

Water filter: Although it turns out that water is common in space, with comets being lousy with the stuff in the form of ice, and water-ice confirmed on the Moon and subsurface liquid water on Mars, as well as countless other places, we don’t have easy access to it, so until we establish water mining operations off-Earth, we need to bring it with us. Here’s the trick, though: water is heavy. A liter weighs a kilogram and a gallon weighs a little over eight pounds. There’s really no valid recommendation on how much water a person should drink in a day, but if we allow for two liters per day per person, with a seven person crew on the ISS, that’s fourteen kilos, or 31 pounds of extra weight per day. At current SpaceX launch rates, that can range from $23,000 to $38,000 per daily supply of water, but given a realistic launch schedule of every six weeks, that works out to around $1 to $1.5 million per launch just for the water. That six-week supply is also eating up 588 kilos of payload.

And remember: This is just for a station that’s in Earth orbit. For longer missions, the cost of getting water to them is going to get ridiculously expensive fast — and remember, too, that SpaceX costs are relatively recent. In 1981, the cost per kilogram was $85,216, although the Space Shuttles cargo capacity was slightly more than the Falcon Light.

So what’s the solution? Originally, it was just making sure all of the water was purified, leading to the Microbial Check Valve, which eventually filtered out (pun intended) to municipal water systems and dental offices. But to really solve the water problem, NASA is moving to recycling everything. And why not? Our bodies tend to excrete a lot of the water we drink when we’re done with it. Although it’s a myth that urine is sterile, it is possible to purify it to reclaim the water in it, and NASA has done just that. However, they really shouldn’t use the method shown in the satirical WW II film Catch-22

So it’s absolutely not true that the space program has given us nothing, and this list of five items barely scratches the surface. Once what we learn up there comes back down to Earth, it can improve all of our lives, from people living in the poorest remote villages on the planet to those living in splendor in the richest cities.

If you don’t believe that, here’s a question. How many articles of clothing that are NASA spin-offs are you wearing now, or do you wear on a regular basis? You’d be surprised.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.