Why astrology is bunk

I know way too many otherwise intelligent adults who believe in astrology, and it really grinds my gears, especially right now, because I’m seeing a lot of “Mercury is going retrograde — SQUEEEE” posts, and they are annoying and wrong.

The effect that Mercury in retrograde will have on us: Zero.

Fact

Mercury doesn’t “go retrograde.” We catch up with and then pass it, so it only looks like it’s moving backwards. It’s an illusion, and entirely a function of how planets orbit the sun, and how things look from here. If Mars had (semi)intelligent life, they would note periods when the Earth was in retrograde, but it’d be for the exact same reason.

Science

What force, exactly, would affect us? Gravity is out, because the gravitational effect of anything else in our solar system or universe is dwarfed by the Earth’s. When it comes to astrology at birth, your OB/GYN has a stronger gravitational effect on you than the Sun.

On top of that, the Sun has 99.9% of the mass of our solar system, which is how gravity works, so the Sun has the greatest gravitational influence on all of the planets. We only get a slight exception because of the size of our Moon and how close it is, but that’s not a part of astrology, is it? (Not really. They do Moon signs, but it’s not in the day-to-day.)

Some other force? We haven’t found one yet.

History

If astrology were correct, then there are one of two possibilities. A) It would have predicted the existence of Uranus and Neptune, and possibly Pluto, long before they were discovered, since astrology goes back to ancient times, but those discoveries happened in the modern era, or B) It would not have allowed for the addition of those three planets (and then the removal of Pluto) once discovered, since all of the rules would have been set down. And it certainly would have accounted for the 13th sign, Ophiuchus, which, again, wasn’t found until very recently, by science.

So…stop believing in astrology, because it’s bunk. Mercury has no effect on us whatsoever, other than when astronomers look out with telescopes and watch it transit the Sun, and use its movements to learn more about real things, like gravity.

Experiment

James Randi, fraud debunker extraordinaire, does a classroom exercise that demolishes the accuracy of those newspaper horoscopes, and here it is — apologies for the low quality video.

Yep. Those daily horoscopes you read are general enough to be true for anyone, and confirmation bias means that you’ll latch onto the parts that fit you and ignore the parts that don’t although, again, they’re designed to fit anyone — and no one is going to remember the generic advice or predictions sprinkled in or, if they do, will again pull confirmation bias only when they think they came true.

“You are an intuitive person who likes to figure things out on your own, but doesn’t mind asking for help when necessary. This is a good week to start something new, but be careful on Wednesday. You also have a coworker who is plotting to sabotage you, but another who will come to your aid. Someone with an S in their name will become suddenly important, and they may be an air sign. When you’re not working on career, focus on home life, although right now your Jupiter is indicating that you need to do more organizing than cleaning. There’s some conflict with Mars, which says that you may have to deal with an issue you’ve been having with a neighbor. Saturn in your third house indicates stability, so a good time to keep on binge watching  your favorite show, but Uranus retrograde indicates that you’ll have to take extra effort to protect yourself from spoilers.”

So… how much of that fit you? Or do you think will? Honestly, it is 100% pure, unadulterated bullshit that I just made up, without referencing any kind of astrological chart at all, and it could apply to any sign because it mentions none.

Conclusion

If you’re an adult, you really shouldn’t buy into this whole astrology thing. The only way any of the planets would have any effect at all on us is if one of them suddenly slammed into the Earth. That probably only happened once, or not, but it’s what created the Moon. So probably ultimately not a bad thing… except for anything living here at the time.

5 things space exploration brought back down to Earth

Recently, I wrote about how a thing as terrible as World War I still gave us some actual benefits, like improvements in plastic surgery, along with influencing art in the 20th century. Now, I’d like to cover something much more positive: five of the tangible, down-to-earth benefits that NASA’s space programs, including the Apollo program to the Moon, have given us.

I’m doing so because I happened across another one of those ignorant comments on the internet along the lines of, “What did going to the Moon ever really get us except a couple of bags of rocks?” That’s kind of like asking, “What did Columbus sailing to America ever really get us?” The answer to that should be obvious, although NASA did it with a lot fewer deaths and exactly zero genocide.

All of those Apollo-era deaths came with the first manned attempt, Apollo 1, which was destroyed by a cabin fire a month before its actual launch date during a test on the pad on January 27, 1967, killing all three astronauts aboard. As a consequence, missions 2 through 6 were unmanned. Apollo 7 tested docking maneuvers for the Apollo Crew and Service Modules, to see if this crucial step would work, and Apollo 8 was the first to achieve lunar orbit, circling our satellite ten times before returning to Earth. Apollo 9 tested the crucial Lunar Module, responsible for getting the first humans onto and off of the Moon, and Apollo 10 was a “dress rehearsal,” which went through all of the steps except the actual landing.

Apollo 11, of course, was the famous “one small step” mission, and after that we only flew six more times to the Moon, all of them meant to do the same as 11, but only the other one that’s most people remember, Apollo 13, is famous for failing to make it there.

I think the most remarkable part is that we managed to land on the Moon only two-and-a-half years after that disastrous first effort, and then carried out five successful missions in the three-and-a-half-years after that. What’s probably less well-known is that three more missions were cancelled between Apollo 13 and 14, but still with the higher numbers 18 through 20 because their original launch dates were not until about two years later.

Yes, why they just didn’t skip from to 17 so that the numbering worked out to 20 is a mystery.

Anyway, the point is that getting to the Moon involved a lot of really intelligent people solving a lot of tricky problems in a very short time, and as a result of it, a ton of beneficial tech came out of it. Some of this fed into or came from Apollo directly, while other tech was created or refined in successive programs, like Skylab, and  the Space Shuttle.

Here are my five favorites out of the over 6,300 technologies that NASA made great advances in on our journeys off of our home planet.

CAT scanner: Not actually an invention of NASA’s per se — that credit goes to British physicists Godfrey Hounsfield and Allan Cormack. However, the device did use NASA’s digital imaging technology in order to work, and this had been developed by JPL for NASA in order to enhance images taken on the moon. Since neither CAT scanners nor MRIs use visible light to capture images, the data they collect needs to be processed somehow and this is where digital imaging comes in.

A CAT scanner basically uses a revolving X-ray tube to repeatedly circle the patient and create a profile of data taken at various depths and angles, and this is what the computer puts together. The MRI is far safer (as long as you don’t get metal too close to it.)

This is because instead of X-rays an MRI machine works by using a magnetic field to cause the protons in every water molecule in your body to align, then pulsing a radio frequency through, which unbalances the proton alignment. When the radio frequency is then turned off, the protons realign. The detectors sense how long it takes protons in various places to do this, which tells them what kind of tissue they’re in. Once again, that old NASA technology takes all of this data and turns it into images that can be understood by looking at them. Pretty nifty, huh?

Invisible braces: You may remember this iconic moment from Star Trek IV: The One with the Whales, in which Scotty shares the secret of “transparent aluminum” with humans of 1986.

However, NASA actually developed transparent polycrystalline alumina long before that film came out and, although TPA is not a metal, but a ceramic, it contributed to advances in creating nearly invisible braces. (Note that modern invisible braces, like Invisalign, are not made of ceramic.)

But the important point to note is that NASA managed to take a normally opaque substance and allow it to transmit light while still maintaining its properties. And why did NASA need transparent ceramic? Easy. That stuff is really heat-resistant, and if you have sensors that need to see light while you’re dumping a spacecraft back into the atmosphere, well, there you go. Un-melting windows and antennae, and so on. This was also a spin-off of heat-seeking missile technology.

Joystick: You can be forgiven for thinking that computer joysticks were invented in the early 1980s by ATARI or (if you really know your gaming history) by ATARI in the early 1970s. The first home video game, Pong, was actually created in 1958, but the humble joystick itself goes back to as far as aviation does, since that’s been the term for the controller on airplanes since before World War I. Why is it called a “joystick?” We really don’t know, despite attempts at creating folk etymology after the fact.

However, those early joysticks were strictly analogue — they were connected mechanically to the flaps and rudders that they controlled. The first big innovation came thirty-two years before Pong, when joysticks went electric. Patented in 1926, it was dreamt up by C. B. Mirick at the U.S. Naval Research Laboratory. Its purpose was also controlling airplanes.

So this is yet another incidence of something that NASA didn’t invent, but boy howdy did they improv upon it — an absolute necessity when you think about it. For NASA, joysticks were used to land craft on the Moon and dock them with each other in orbit, so precision was absolutely necessary, especially when trying to touch down on a rocky satellite after descending through no atmosphere at orbital speed, which can be in the vicinity of 2,300 mph (about 3,700 km/h) at around a hundred kilometers up. They aren’t much to look at by modern design standards, but one of them sold at auction a few years back for over half a million dollars.

It gets even trickier when you need to dock two craft moving at similar speed, and in the modern day, we’re doing it in Earth orbit. The International Space Station is zipping along at a brisk 17,150 mph, or 27,600 km/h. That’s fast.

The early NASA innovations involved adding rotational control in addition to the usual X and Y axes, and later on they went digital and all kinds of crazy in refining the devices to have lots of buttons and be more like the controllers we know and love today. So next time you’re shredding it your favorite PC or Xbox game with your $160 Razer Wolverine Ultimate Chroma Controller, thank the rocket scientists at NASA. Sure, it doesn’t have a joystick in the traditional sense, but this is the future that space built, so we don’t need one!

Smoke detector: This is another device that NASA didn’t invent, but which they certainly refined and improved. While their predecessors, automatic fire alarms, date back to the 19th century, the first model relied on heat detection only. The problem with this, though, is that you don’t get heat until the fire is already burning, and the main cause of death in house fires isn’t the flames. It’s smoke inhalation. The version patented by George Andrew Darby in England in the 1890s did account for some smoke, but it wasn’t until the 1930s the concept of using ionization to detect smoke happened. Still, these devices were incredibly expensive, so only really available to corporations and governments. But isn’t that how all technological progress goes?

It wasn’t until NASA teamed with Honeywell (a common partner) in the 1970s that they managed to bring down the size and cost of these devices, as well as make them battery-operated. More recent experiments on ISS have helped scientists to figure out how to refine the sensitivity of smoke detectors, so that it doesn’t go off when your teenage boy goes crazy with the AXE body spray or when there’s a little fat-splash back into the metal roaster from the meat you’re cooking in the oven. Both are annoying, but at least the latter does have a positive outcome.

Water filter: Although it turns out that water is common in space, with comets being lousy with the stuff in the form of ice, and water-ice confirmed on the Moon and subsurface liquid water on Mars, as well as countless other places, we don’t have easy access to it, so until we establish water mining operations off-Earth, we need to bring it with us. Here’s the trick, though: water is heavy. A liter weighs a kilogram and a gallon weighs a little over eight pounds. There’s really no valid recommendation on how much water a person should drink in a day, but if we allow for two liters per day per person, with a seven person crew on the ISS, that’s fourteen kilos, or 31 pounds of extra weight per day. At current SpaceX launch rates, that can range from $23,000 to $38,000 per daily supply of water, but given a realistic launch schedule of every six weeks, that works out to around $1 to $1.5 million per launch just for the water. That six-week supply is also eating up 588 kilos of payload.

And remember: This is just for a station that’s in Earth orbit. For longer missions, the cost of getting water to them is going to get ridiculously expensive fast — and remember, too, that SpaceX costs are relatively recent. In 1981, the cost per kilogram was $85,216, although the Space Shuttles cargo capacity was slightly more than the Falcon Light.

So what’s the solution? Originally, it was just making sure all of the water was purified, leading to the Microbial Check Valve, which eventually filtered out (pun intended) to municipal water systems and dental offices. But to really solve the water problem, NASA is moving to recycling everything. And why not? Our bodies tend to excrete a lot of the water we drink when we’re done with it. Although it’s a myth that urine is sterile, it is possible to purify it to reclaim the water in it, and NASA has done just that. However, they really shouldn’t use the method shown in the satirical WW II film Catch-22

So it’s absolutely not true that the space program has given us nothing, and this list of five items barely scratches the surface. Once what we learn up there comes back down to Earth, it can improve all of our lives, from people living in the poorest remote villages on the planet to those living in splendor in the richest cities.

If you don’t believe that, here’s a question. How many articles of clothing that are NASA spin-offs are you wearing now, or do you wear on a regular basis? You’d be surprised.

Forces of nature

If you want to truly be amazed by the wonders of the universe, the quickest way to do so is to learn about the science behind it.

And pardon the split infinitive in that paragraph, but it’s really not wrong in English, since it became a “rule” only after a very pedantic 19th century grammarian, John Comly, declared that it was wrong to do so — although neither he nor his contemporaries ever called it that. Unfortunately, he based this on the grammar and structure of Latin, to which that of English bears little resemblance.

That may seem like a digression, but it brings us back to one of the most famous modern split infinitives that still resonates throughout pop culture today: “To boldly go where no one has gone before,” and this brings us gracefully back to science and space.

That’s where we find the answer to the question “Where did we come from?” But what would you say exactly is the ultimate force that wound up directly creating each one of us?

One quick and easy answer is the Big Bang. This is the idea, derived from the observation that everything in the universe seems to be moving away from everything else, so that at one time everything must have been in the same place. That is, what became the entire universe was concentrated into a single point that then somehow exploded outward into, well, everything.

But the Big Bang itself did not instantly create stars and planets and galaxies. It was way too energetic for that. So energetic, in fact, that matter couldn’t even form in the immediate aftermath. Instead, everything that existed was an incredibly hot quantum foam of unbound quarks. Don’t let the words daunt you. The simple version is that elements are made up of atoms, and an atom is the smallest unit of any particular element — an atom of hydrogen, helium, carbon, iron, etc. Once you move to the subatomic particles that make up the atom, you lose any of the properties that make the element unique, most of which have to do with its atomic weight and the number of free electrons wrapped around it.

Those atoms in turn are made up of electrons that are sort of smeared out in a statistical cloud around a nucleus made up of at least one proton (hydrogen), and then working their way up through larger collections of protons (positively charged), an often but not always equal number of neutrons (no charge), and a number of electrons (negatively charged) that may or may not equal the number of protons.

Note that despite what you might have learned in school, an atom does not resemble a mini solar system in any particular way at all, with the electron “planets” neatly orbiting the “star” that is the nucleus. Instead, the electrons live in what are called orbitals and shells, but they have a lot more to do with energy levels and probable locations than they do with literal placement of discrete dots of energy.

Things get weird on this level, but they get weirder if you go one step down and look inside of the protons and neutrons. These particles themselves are made up of smaller particles that were named quarks by Nobel Prize winner Murray Gell-Man as a direct homage to James Joyce. The word comes from a line from Joyce’s book Finnegans Wake, which itself is about as weird and wonderful as the world of subatomic science. “Three quarks for muster mark…”

The only difference between a proton and a neutron is the configuration of quarks inside. I won’t get into it here except to say that if we call the quarks arbitrarily U and D, a proton has two U’s and one D, while a neutron has two D’s and one U.

And for the first few milliseconds after the Big Bang, the universe was an incredibly hot soup of all these U’s and D’s flying around, unable to connect to each other because the other theoretical particles that could have tied them together, gluons, couldn’t get a grip. The universe was also incredibly dark because photons couldn’t move through it.

Eventually, as things started to cool down, the quarks and gluons started to come together, creating protons and neutrons. The protons, in turn, started to hook up with free electrons to create hydrogen. (The neutrons, not so much at first, since when unbound they tend to not last a long time.) Eventually, the protons and neutrons did start to hook up and lure in electrons, creating helium. This is also when the universe became transparent, because now the photons could move through it freely.

But we still haven’t quite gotten to the force that created all of us just yet. It’s not the attractive force that pulled quarks and gluons together, nor is it the forces that bound electrons and protons. That’s because, given just those forces, the subatomic particles and atoms really wouldn’t have done much else. But once they reached the stage of matter — once there were elements with some appreciable (though tiny) mass to toss around, things changed.

Vast clouds of gas slowly started to fall into an inexorable dance as atoms of hydrogen found themselves pulled together, closer and closer, and tighter and tighter. The bigger the cloud became, the stronger the attraction until, eventually, a big enough cloud of hydrogen would suddenly collapse into itself so rapidly that the hydrogen atoms in the middle would slam together with such force that it would overcome the natural repulsion of the like-charged electron shells and push hard enough to force the nuclei together. And then you’d get… more helium, along with a gigantic release of energy.

And so, a star is born. A bunch of stars. A ton of stars, everywhere, and in great abundance, and with great energy. This is the first generation of stars in the universe and, to quote Bladerunner, “The light that burns twice as bright burns half as long.” These early stars were so energetic that they didn’t make it long, anf they managed to really squish things together. You see, after you turn hydrogen into helium, the same process turns helium into heavier elements, like lithium, carbon, neon, oxygen, and silicon. And then, once it starts to fuse atoms into iron, a funny thing happens. Suddenly, the process stops producing energy, the star collapses into itself, and then it goes boom, scattering those elements aback out into the universe.

This process will happen to stars that don’t burn as brightly, either. It will just take longer. The first stars lasted a few hundred million years. A star like our sun is probably good for about ten billion, and we’re only half way along.

But… have you figured out yet which force made these stars create elements and then explode and then create us, because that was the question: “What would you say exactly is the ultimate force that wound up directly creating each one of us?”

It’s the same force that pulled those hydrogen atoms together in order to create heavier elements and then make stars explode in order to blast those elements back out into the universe to create new stars and planets and us. It’s the same reason that we have not yet mastered doing nuclear fusion because we cannot control this force and don’t really know yet what creates it. It’s the same force that is keeping your butt in your chair this very moment.

It’s called gravity. Once the universe cooled down enough for matter to form — and hence mass — this most basic of laws took over, and anything that did have mass started to attract everything else with mass. That’s just how it works. And once enough mass got pulled together, it came together tightly enough to overcome any other forces in the universe.  Remember: atoms fused because the repulsive force of the negative charge of electrons was nowhere near strong enough to resist gravity, and neither was the nuclear force between protons and neutrons.

Let gravity grow strong enough, in fact, and it can mash matter so hard that it turns every proton in a star into a neutron which is surrounded by a surface cloud of every electron sort of in the same place, and this is called a neutron star. Squash it even harder, and you get a black hole, a very misunderstood (by lay people) object that nonetheless seems to actually be the anchor (or one of many) that holds most galaxies together.

Fun fact, though. If our sun suddenly turned into a black hole (unlikely because it’s not massive enough) the only effect on the Earth would be… nothing for about eight minutes, and then it would get very dark and cold, although we might also be fried to death by a burst of gamma radiation. But the one thing that would not happen is any of the planets suddenly getting sucked into it.

Funny thing about black holes. When they collapse like that and become one, their radius may change drastically, like from sun-sized to New York-sized, but their gravity doesn’t change at all.

But I do digress. Or maybe not. Circle back to the point of this story: The universal force that we still understand the least also happens to be the same damn force that created every single atom in every one of our bodies. Whether it has its own particle or vector, or whether it’s just an emergent property of space and time, is still anybody’s guess. But whichever turns out to be true, if you know some science, then the power of gravity is actually quite impressive.

Across the multiverse

It can be daunting, sometimes, to think about the precarious pathways that led to each of our lives, and then led to the lives we have led. In my case, answering a want ad in Variety two years out of college led to an office job that changed everything — not because of the job, but because of the people I met, and connections that led directly to me pursuing a career as a playwright with some success and also to working in television and eventually doing improv.

But I never would have wound up there if my parents hadn’t met and married, and that only happened because my mother had one bad first marriage that led to her moving across the country and winding up working as a waitress in a restaurant across from the office where my father, who was also ending his bad first marriage, worked. He wound up there because he had taken advantage of the G.I. Bill to study architecture and so was a structural engineer for one of the more prestigious firms in Los Angeles. In another case of amazing coincidence, I wound up working about a block from where his office and her restaurant had been when I went into the TV biz twenty-ish years after he worked there.

So my father wound up doing the G.I. Bill thing because he was a veteran and that happened because there had been a war. But he was only in America to fight on our side because his grandfather had come here in the first place, and my father’s own father and mother wound up in California. That happened because my grandfather worked for the railroads. I also think it was because my grandmother got knocked up with my dad’s older brother at about eighteen and before they married, but that’s beside the point. Or maybe not.

If my mother had stayed where she’d been born, she never would have met my father. If my great grandfather had never left Germany, than one of my ancestors may have died on the wrong side of WW II. And if that had happened and my mother came to Los Angeles anyway, there’s no telling whom she might have met and married. It could have been a big power player in Hollywood. It could have been a dishwasher in the restaurant. The unanswered question, really, is whether who I am came only from her egg or from dad’s sperm, or whether I would have never existed had the two never met. Impossible to say.

What’s really fascinating are the long-term effects of random choices. I do improv now because of one particular actor I met about six years ago. I met him because he was involved with a play of mine that was produced in 2014. That play happened because an actor who had done a reading of it when I first wrote it, twenty years previously, remembered it when he was at a point to play the lead and bring it to a company. That reading happened because it was set up by a woman who produced my second full-length play — and who is still one of my best friends — and that happened because of all the attention received by my first produced full-length play, which happened because of a woman I met at that first office job out of college I mentioned before. She was in a writing group, heard I was interested in being a writer and invited me to join. Ta-da… a link in a damn long chain of consequence happened.

And that third play, about William S. Burroughs, only happened because I somehow heard about his works when I was probably in middle school, and only because the title “Naked Lunch” made a bunch of twelve-year-olds giggle. But reading that book when I was about fourteen, and realizing it was about so much more, and then discovering the rest of his works along with Vonnegut and Joyce and Robert Anton Wilson and so many others set my sails for being a writer, and out of all of them, Burroughs had the most fascinating life story, as well as the personal struggle I most related to, since he was a gay man, after all.

And, I suppose, I can attribute my interest in the salacious and interesting to the fact that my mother had such an aversion to them. She could watch people on cable TV get their heads blown off for days, but show one tit or one ass — or god forbid a dick — and she would lose it. It was good-old Catholic body shame, and I never understood it, mainly since I’ve been a naturist since, like, forever. Of course, the extent of my exposure to that church was to be baptized as a preemie “just in case,” and then not a lot else beyond the scary crucifix that always hung in my bedroom and the scarier icons and statues I’d see when we visited my mom’s mom.

Ironically, I’ve actually come to relate to Catholicism, although not so much as a religion, but more as a cultural touchstone and anchor for my Irish roots. Yeah, we bog-cutters love the ceremony, but piss on the bullshit, so that’s probably why it works. Give me the theater, spare me the crap. Sing all you want, you middle-aged men in dresses, but touch the kids, and we will end you.

But I do digress… because if we’re going to go down the Irish rabbit hole, that is an entirely different path by which I could have not wound up here today. At any point, one of my direct ancestors on my mother’s side could have taken vows, and then boom. No more descendants to lead to me.

Or any of my grandparents or parents or I could have walked in front of a speeding bus before their descendants were born or before I had my first play produced, and game over. History changed. I could have signed up with a temp agency on a different day and never wound up having met my best friend.

Then again… I have no idea who I would be if any of these different paths had been taken at any point in history all the way back to the beginning. It’s really daunting to consider how many ancestors actually had to come together to lead to the genetic knot that is you or me. But you and I exist as who we are. Rather than worry about how easily that could not have happened, I suppose, the better approach is to just revel in the miracle that it did. Here we are. It happened because other things happened. And thinking too hard about why those other things happened might actually be a bad thing to do.

New Horizons

I’ve always been a giant nerd for three things: History, language, and science. History fascinates me because it shows how humanity has progressed over the years and centuries. We were wandering tribes reliant on whatever we could kill or scavenge, but then we discovered the secrets of agriculture (oddly enough, hidden in the stars), so then we created cities, where we were much safer from the elements.

Freed from a wandering existence, we started to develop culture — arts and sciences — because we didn’t have to spend all of our time picking berries or hunting wild boar. Of course, at the same time, we also created things like war and slavery and monarchs, which are really the ultimate evil triumvir of all of humanity, and three things we really haven’t shaken off yet, even if we sometimes call them by different names. At the same time, humanity also strove for peace and freedom and equality.

It’s a back and forth struggle as old as man, sometimes forward and sometimes back. It’s referred to as the cyclical theory of history. Arthur Schlesinger, Jr. developed the theory with specific reference to American history, although it can apply much farther back than that. Anthony Burgess, author of A Clockwork Orange, explored it specifically in his earlier novel The Wanting Seed, although it could be argued that both books cover two different aspects of the cycle. The short version of the cycle: A) Society (i.e. government) sees people as good and things progress and laws become more liberal. B) Society (see above) sees people as evil and things regress as laws become harsher and draconian, C) Society (you know who) finally wakes up and realizes, “Oh. We’ve become evil…” Return to A. Repeat.

This is similar to Hegel’s Dialectic — thesis, antithesis, synthesis, which itself was parodied in Robert Anton Wilson and Robert Shea’s Illuminatus! Trilogy, which posited a five stage view of history instead of three, adding parenthesis and paralysis to the mix.

I’m not entirely sure that they were wrong.

But enough of history, although I could go on about it for days. Regular readers already know about my major nerdom for language, which is partly related to history as well, so let’s get to the science.

The two areas of science I’ve always been most interested in also happen to be at completely opposite ends of the scale. On the large end are astronomy and cosmology, which deal with things on scales way bigger than what we see in everyday life. I’m talking the size of solar systems, galaxies, local clusters, and the universe itself. Hey, when I was a kid, humans had already been in space for a while, so it seemed like a totally normal place to be. The first space disaster I remember was the Challenger shuttle, and that was clearly human error.

At the other end of the size scale: chemistry and quantum physics. Chemistry deals with interactions among elements and molecules which, while they’re too small for us to see individually, we can still see the results. Ever make a vinegar and baking soda volcano? Boom! Chemistry. And then there’s quantum physics, which deals with things so small that we can never actually see them, and we can’t even really be quite sure about our measurements of them, except that the models we have also seem to give an accurate view of how the universe works.

Without understanding quantum physics, we would not have any of our sophisticated computer devices, nor would we have GPS (which also relies on Einstein’s Relativity, which does not like quantum physics, nor vice versa.) We probably wouldn’t even have television or any of its successors, although we really didn’t know that at the time TV was invented, way before the atomic bomb. Not that TV relies on quantum mechanics, per se, but its very nature does depend on the understanding that light can behave as either a particle or a wave and figuring out how to force it to be a particle.

But, again, I’m nerding out and missing the real point. Right around the end of last year, NASA did the amazing, and slung their New Horizons probe within photo op range of the most distant object we’ve yet visited in our solar system. Called Ultima Thule, it is a Kuiper Belt object about four billion miles away from earth, only about 19 miles long, and yet we still managed to get close enough to it to get some amazing photos.

And this really is the most amazing human exploration of all. New Horizons was launched a generation or two after both Viking probes, and yet got almost as far in under half the time — and then, after rendezvousing with disgraced dwarf planet Pluto went on to absolutely nail a meeting with a tiny rock so far from the sun that it probably isn’t even really all that bright. And all of this was done with plain old physics, based on rules worked out by some dude in the 17th century. I think they named some sort of cookie after him, but I could be wrong. Although those original rules, over such great distances, wouldn’t have really worked out without the tweaking that the quantum rules gave us.

Exploring distant space is really a matter of combining our knowledge of the very, very big with the very, very small — and this should really reflect back on our understanding of history. You cannot begin to comprehend the macro if you do not understand the micro.

Monarchs cannot do shit without understanding the people beneath them. This isn’t just a fact of history. For the scientifically inclined, the one great failing of Einstein’s theories — which have been proven experimentally multiple times — is that they fall entirely apart on the quantum level. This doesn’t mean that Einstein was wrong. Just that he couldn’t or didn’t account for the power of the very, very tiny.

And, call back to the beginning: Agriculture, as in the domestication of plants and animals, did not happen until humans understood the cycle of seasons and the concept of time. Before we built clocks, the only way to do that was to watch the sun, the moon, and the stars and find the patterns. In this case, we had to learn to pay attention to the very, very slow, and to keep very accurate records. Once we were able to predict things like changes in the weather, or reproductive cycles, or when to plant and when to harvest, all based on when the sun or moon rose or set, ta-da. We had used science to master nature and evolve.

And I’ve come full circle myself. I tried to separate history from science, but it’s impossible. You see, the truth that humanity learns by objectively pursuing science is the pathway to free us from the constant cycle of good to bad to oops and back to good. Repeat.

Hey, let’s not repeat. Let’s make a concerted effort to agree when humanity achieves something good, then not flip our shit and call it bad. Instead, let’s just keep going ever upward and onward. Change is the human condition. If you want to restore the world of your childhood, then there’s something wrong with you, not the rest of us. After all, if the negative side of humanity had won when we first learned how to domesticate plants and animals and create cities, we might all still be wandering, homeless and nearly naked, through an inhospitable world, with our greatest advancements in technology being the wheel and fire — and the former not used for transportation, only for grinding whatever plants we’d picked that day into grain. Or, in other words, moderately intelligent apes with no hope whatsoever of ever learning anything or advancing toward being human.

Not a good look, is it? To quote Stan Lee: “Excelsior!”

Onward. Adelante. Let’s keep seeking those new and broader horizons.