Forces of nature

If you want to truly be amazed by the wonders of the universe, the quickest way to do so is to learn about the science behind it.

And pardon the split infinitive in that paragraph, but it’s really not wrong in English, since it became a “rule” only after a very pedantic 19th century grammarian, John Comly, declared that it was wrong to do so — although neither he nor his contemporaries ever called it that. Unfortunately, he based this on the grammar and structure of Latin, to which that of English bears little resemblance.

That may seem like a digression, but it brings us back to one of the most famous modern split infinitives that still resonates throughout pop culture today: “To boldly go where no one has gone before,” and this brings us gracefully back to science and space.

That’s where we find the answer to the question “Where did we come from?” But what would you say exactly is the ultimate force that wound up directly creating each one of us?

One quick and easy answer is the Big Bang. This is the idea, derived from the observation that everything in the universe seems to be moving away from everything else, so that at one time everything must have been in the same place. That is, what became the entire universe was concentrated into a single point that then somehow exploded outward into, well, everything.

But the Big Bang itself did not instantly create stars and planets and galaxies. It was way too energetic for that. So energetic, in fact, that matter couldn’t even form in the immediate aftermath. Instead, everything that existed was an incredibly hot quantum foam of unbound quarks. Don’t let the words daunt you. The simple version is that elements are made up of atoms, and an atom is the smallest unit of any particular element — an atom of hydrogen, helium, carbon, iron, etc. Once you move to the subatomic particles that make up the atom, you lose any of the properties that make the element unique, most of which have to do with its atomic weight and the number of free electrons wrapped around it.

Those atoms in turn are made up of electrons that are sort of smeared out in a statistical cloud around a nucleus made up of at least one proton (hydrogen), and then working their way up through larger collections of protons (positively charged), an often but not always equal number of neutrons (no charge), and a number of electrons (negatively charged) that may or may not equal the number of protons.

Note that despite what you might have learned in school, an atom does not resemble a mini solar system in any particular way at all, with the electron “planets” neatly orbiting the “star” that is the nucleus. Instead, the electrons live in what are called orbitals and shells, but they have a lot more to do with energy levels and probable locations than they do with literal placement of discrete dots of energy.

Things get weird on this level, but they get weirder if you go one step down and look inside of the protons and neutrons. These particles themselves are made up of smaller particles that were named quarks by Nobel Prize winner Murray Gell-Man as a direct homage to James Joyce. The word comes from a line from Joyce’s book Finnegans Wake, which itself is about as weird and wonderful as the world of subatomic science. “Three quarks for muster mark…”

The only difference between a proton and a neutron is the configuration of quarks inside. I won’t get into it here except to say that if we call the quarks arbitrarily U and D, a proton has two U’s and one D, while a neutron has two D’s and one U.

And for the first few milliseconds after the Big Bang, the universe was an incredibly hot soup of all these U’s and D’s flying around, unable to connect to each other because the other theoretical particles that could have tied them together, gluons, couldn’t get a grip. The universe was also incredibly dark because photons couldn’t move through it.

Eventually, as things started to cool down, the quarks and gluons started to come together, creating protons and neutrons. The protons, in turn, started to hook up with free electrons to create hydrogen. (The neutrons, not so much at first, since when unbound they tend to not last a long time.) Eventually, the protons and neutrons did start to hook up and lure in electrons, creating helium. This is also when the universe became transparent, because now the photons could move through it freely.

But we still haven’t quite gotten to the force that created all of us just yet. It’s not the attractive force that pulled quarks and gluons together, nor is it the forces that bound electrons and protons. That’s because, given just those forces, the subatomic particles and atoms really wouldn’t have done much else. But once they reached the stage of matter — once there were elements with some appreciable (though tiny) mass to toss around, things changed.

Vast clouds of gas slowly started to fall into an inexorable dance as atoms of hydrogen found themselves pulled together, closer and closer, and tighter and tighter. The bigger the cloud became, the stronger the attraction until, eventually, a big enough cloud of hydrogen would suddenly collapse into itself so rapidly that the hydrogen atoms in the middle would slam together with such force that it would overcome the natural repulsion of the like-charged electron shells and push hard enough to force the nuclei together. And then you’d get… more helium, along with a gigantic release of energy.

And so, a star is born. A bunch of stars. A ton of stars, everywhere, and in great abundance, and with great energy. This is the first generation of stars in the universe and, to quote Bladerunner, “The light that burns twice as bright burns half as long.” These early stars were so energetic that they didn’t make it long, anf they managed to really squish things together. You see, after you turn hydrogen into helium, the same process turns helium into heavier elements, like lithium, carbon, neon, oxygen, and silicon. And then, once it starts to fuse atoms into iron, a funny thing happens. Suddenly, the process stops producing energy, the star collapses into itself, and then it goes boom, scattering those elements aback out into the universe.

This process will happen to stars that don’t burn as brightly, either. It will just take longer. The first stars lasted a few hundred million years. A star like our sun is probably good for about ten billion, and we’re only half way along.

But… have you figured out yet which force made these stars create elements and then explode and then create us, because that was the question: “What would you say exactly is the ultimate force that wound up directly creating each one of us?”

It’s the same force that pulled those hydrogen atoms together in order to create heavier elements and then make stars explode in order to blast those elements back out into the universe to create new stars and planets and us. It’s the same reason that we have not yet mastered doing nuclear fusion because we cannot control this force and don’t really know yet what creates it. It’s the same force that is keeping your butt in your chair this very moment.

It’s called gravity. Once the universe cooled down enough for matter to form — and hence mass — this most basic of laws took over, and anything that did have mass started to attract everything else with mass. That’s just how it works. And once enough mass got pulled together, it came together tightly enough to overcome any other forces in the universe.  Remember: atoms fused because the repulsive force of the negative charge of electrons was nowhere near strong enough to resist gravity, and neither was the nuclear force between protons and neutrons.

Let gravity grow strong enough, in fact, and it can mash matter so hard that it turns every proton in a star into a neutron which is surrounded by a surface cloud of every electron sort of in the same place, and this is called a neutron star. Squash it even harder, and you get a black hole, a very misunderstood (by lay people) object that nonetheless seems to actually be the anchor (or one of many) that holds most galaxies together.

Fun fact, though. If our sun suddenly turned into a black hole (unlikely because it’s not massive enough) the only effect on the Earth would be… nothing for about eight minutes, and then it would get very dark and cold, although we might also be fried to death by a burst of gamma radiation. But the one thing that would not happen is any of the planets suddenly getting sucked into it.

Funny thing about black holes. When they collapse like that and become one, their radius may change drastically, like from sun-sized to New York-sized, but their gravity doesn’t change at all.

But I do digress. Or maybe not. Circle back to the point of this story: The universal force that we still understand the least also happens to be the same damn force that created every single atom in every one of our bodies. Whether it has its own particle or vector, or whether it’s just an emergent property of space and time, is still anybody’s guess. But whichever turns out to be true, if you know some science, then the power of gravity is actually quite impressive.

Across the multiverse

It can be daunting, sometimes, to think about the precarious pathways that led to each of our lives, and then led to the lives we have led. In my case, answering a want ad in Variety two years out of college led to an office job that changed everything — not because of the job, but because of the people I met, and connections that led directly to me pursuing a career as a playwright with some success and also to working in television and eventually doing improv.

But I never would have wound up there if my parents hadn’t met and married, and that only happened because my mother had one bad first marriage that led to her moving across the country and winding up working as a waitress in a restaurant across from the office where my father, who was also ending his bad first marriage, worked. He wound up there because he had taken advantage of the G.I. Bill to study architecture and so was a structural engineer for one of the more prestigious firms in Los Angeles. In another case of amazing coincidence, I wound up working about a block from where his office and her restaurant had been when I went into the TV biz twenty-ish years after he worked there.

So my father wound up doing the G.I. Bill thing because he was a veteran and that happened because there had been a war. But he was only in America to fight on our side because his grandfather had come here in the first place, and my father’s own father and mother wound up in California. That happened because my grandfather worked for the railroads. I also think it was because my grandmother got knocked up with my dad’s older brother at about eighteen and before they married, but that’s beside the point. Or maybe not.

If my mother had stayed where she’d been born, she never would have met my father. If my great grandfather had never left Germany, than one of my ancestors may have died on the wrong side of WW II. And if that had happened and my mother came to Los Angeles anyway, there’s no telling whom she might have met and married. It could have been a big power player in Hollywood. It could have been a dishwasher in the restaurant. The unanswered question, really, is whether who I am came only from her egg or from dad’s sperm, or whether I would have never existed had the two never met. Impossible to say.

What’s really fascinating are the long-term effects of random choices. I do improv now because of one particular actor I met about six years ago. I met him because he was involved with a play of mine that was produced in 2014. That play happened because an actor who had done a reading of it when I first wrote it, twenty years previously, remembered it when he was at a point to play the lead and bring it to a company. That reading happened because it was set up by a woman who produced my second full-length play — and who is still one of my best friends — and that happened because of all the attention received by my first produced full-length play, which happened because of a woman I met at that first office job out of college I mentioned before. She was in a writing group, heard I was interested in being a writer and invited me to join. Ta-da… a link in a damn long chain of consequence happened.

And that third play, about William S. Burroughs, only happened because I somehow heard about his works when I was probably in middle school, and only because the title “Naked Lunch” made a bunch of twelve-year-olds giggle. But reading that book when I was about fourteen, and realizing it was about so much more, and then discovering the rest of his works along with Vonnegut and Joyce and Robert Anton Wilson and so many others set my sails for being a writer, and out of all of them, Burroughs had the most fascinating life story, as well as the personal struggle I most related to, since he was a gay man, after all.

And, I suppose, I can attribute my interest in the salacious and interesting to the fact that my mother had such an aversion to them. She could watch people on cable TV get their heads blown off for days, but show one tit or one ass — or god forbid a dick — and she would lose it. It was good-old Catholic body shame, and I never understood it, mainly since I’ve been a naturist since, like, forever. Of course, the extent of my exposure to that church was to be baptized as a preemie “just in case,” and then not a lot else beyond the scary crucifix that always hung in my bedroom and the scarier icons and statues I’d see when we visited my mom’s mom.

Ironically, I’ve actually come to relate to Catholicism, although not so much as a religion, but more as a cultural touchstone and anchor for my Irish roots. Yeah, we bog-cutters love the ceremony, but piss on the bullshit, so that’s probably why it works. Give me the theater, spare me the crap. Sing all you want, you middle-aged men in dresses, but touch the kids, and we will end you.

But I do digress… because if we’re going to go down the Irish rabbit hole, that is an entirely different path by which I could have not wound up here today. At any point, one of my direct ancestors on my mother’s side could have taken vows, and then boom. No more descendants to lead to me.

Or any of my grandparents or parents or I could have walked in front of a speeding bus before their descendants were born or before I had my first play produced, and game over. History changed. I could have signed up with a temp agency on a different day and never wound up having met my best friend.

Then again… I have no idea who I would be if any of these different paths had been taken at any point in history all the way back to the beginning. It’s really daunting to consider how many ancestors actually had to come together to lead to the genetic knot that is you or me. But you and I exist as who we are. Rather than worry about how easily that could not have happened, I suppose, the better approach is to just revel in the miracle that it did. Here we are. It happened because other things happened. And thinking too hard about why those other things happened might actually be a bad thing to do.

New Horizons

I’ve always been a giant nerd for three things: History, language, and science. History fascinates me because it shows how humanity has progressed over the years and centuries. We were wandering tribes reliant on whatever we could kill or scavenge, but then we discovered the secrets of agriculture (oddly enough, hidden in the stars), so then we created cities, where we were much safer from the elements.

Freed from a wandering existence, we started to develop culture — arts and sciences — because we didn’t have to spend all of our time picking berries or hunting wild boar. Of course, at the same time, we also created things like war and slavery and monarchs, which are really the ultimate evil triumvir of all of humanity, and three things we really haven’t shaken off yet, even if we sometimes call them by different names. At the same time, humanity also strove for peace and freedom and equality.

It’s a back and forth struggle as old as man, sometimes forward and sometimes back. It’s referred to as the cyclical theory of history. Arthur Schlesinger, Jr. developed the theory with specific reference to American history, although it can apply much farther back than that. Anthony Burgess, author of A Clockwork Orange, explored it specifically in his earlier novel The Wanting Seed, although it could be argued that both books cover two different aspects of the cycle. The short version of the cycle: A) Society (i.e. government) sees people as good and things progress and laws become more liberal. B) Society (see above) sees people as evil and things regress as laws become harsher and draconian, C) Society (you know who) finally wakes up and realizes, “Oh. We’ve become evil…” Return to A. Repeat.

This is similar to Hegel’s Dialectic — thesis, antithesis, synthesis, which itself was parodied in Robert Anton Wilson and Robert Shea’s Illuminatus! Trilogy, which posited a five stage view of history instead of three, adding parenthesis and paralysis to the mix.

I’m not entirely sure that they were wrong.

But enough of history, although I could go on about it for days. Regular readers already know about my major nerdom for language, which is partly related to history as well, so let’s get to the science.

The two areas of science I’ve always been most interested in also happen to be at completely opposite ends of the scale. On the large end are astronomy and cosmology, which deal with things on scales way bigger than what we see in everyday life. I’m talking the size of solar systems, galaxies, local clusters, and the universe itself. Hey, when I was a kid, humans had already been in space for a while, so it seemed like a totally normal place to be. The first space disaster I remember was the Challenger shuttle, and that was clearly human error.

At the other end of the size scale: chemistry and quantum physics. Chemistry deals with interactions among elements and molecules which, while they’re too small for us to see individually, we can still see the results. Ever make a vinegar and baking soda volcano? Boom! Chemistry. And then there’s quantum physics, which deals with things so small that we can never actually see them, and we can’t even really be quite sure about our measurements of them, except that the models we have also seem to give an accurate view of how the universe works.

Without understanding quantum physics, we would not have any of our sophisticated computer devices, nor would we have GPS (which also relies on Einstein’s Relativity, which does not like quantum physics, nor vice versa.) We probably wouldn’t even have television or any of its successors, although we really didn’t know that at the time TV was invented, way before the atomic bomb. Not that TV relies on quantum mechanics, per se, but its very nature does depend on the understanding that light can behave as either a particle or a wave and figuring out how to force it to be a particle.

But, again, I’m nerding out and missing the real point. Right around the end of last year, NASA did the amazing, and slung their New Horizons probe within photo op range of the most distant object we’ve yet visited in our solar system. Called Ultima Thule, it is a Kuiper Belt object about four billion miles away from earth, only about 19 miles long, and yet we still managed to get close enough to it to get some amazing photos.

And this really is the most amazing human exploration of all. New Horizons was launched a generation or two after both Viking probes, and yet got almost as far in under half the time — and then, after rendezvousing with disgraced dwarf planet Pluto went on to absolutely nail a meeting with a tiny rock so far from the sun that it probably isn’t even really all that bright. And all of this was done with plain old physics, based on rules worked out by some dude in the 17th century. I think they named some sort of cookie after him, but I could be wrong. Although those original rules, over such great distances, wouldn’t have really worked out without the tweaking that the quantum rules gave us.

Exploring distant space is really a matter of combining our knowledge of the very, very big with the very, very small — and this should really reflect back on our understanding of history. You cannot begin to comprehend the macro if you do not understand the micro.

Monarchs cannot do shit without understanding the people beneath them. This isn’t just a fact of history. For the scientifically inclined, the one great failing of Einstein’s theories — which have been proven experimentally multiple times — is that they fall entirely apart on the quantum level. This doesn’t mean that Einstein was wrong. Just that he couldn’t or didn’t account for the power of the very, very tiny.

And, call back to the beginning: Agriculture, as in the domestication of plants and animals, did not happen until humans understood the cycle of seasons and the concept of time. Before we built clocks, the only way to do that was to watch the sun, the moon, and the stars and find the patterns. In this case, we had to learn to pay attention to the very, very slow, and to keep very accurate records. Once we were able to predict things like changes in the weather, or reproductive cycles, or when to plant and when to harvest, all based on when the sun or moon rose or set, ta-da. We had used science to master nature and evolve.

And I’ve come full circle myself. I tried to separate history from science, but it’s impossible. You see, the truth that humanity learns by objectively pursuing science is the pathway to free us from the constant cycle of good to bad to oops and back to good. Repeat.

Hey, let’s not repeat. Let’s make a concerted effort to agree when humanity achieves something good, then not flip our shit and call it bad. Instead, let’s just keep going ever upward and onward. Change is the human condition. If you want to restore the world of your childhood, then there’s something wrong with you, not the rest of us. After all, if the negative side of humanity had won when we first learned how to domesticate plants and animals and create cities, we might all still be wandering, homeless and nearly naked, through an inhospitable world, with our greatest advancements in technology being the wheel and fire — and the former not used for transportation, only for grinding whatever plants we’d picked that day into grain. Or, in other words, moderately intelligent apes with no hope whatsoever of ever learning anything or advancing toward being human.

Not a good look, is it? To quote Stan Lee: “Excelsior!”

Onward. Adelante. Let’s keep seeking those new and broader horizons.